
The Vertex of a Parabola is the turning point of the graph, splitting the graph in half.

Knowing the Vertex tells us where to begin our table and graph.

1)
$$y = x^2 - 4x - 12$$

\mathcal{X}	- 2	- 1	0	1	2	3	4	5	6
\mathcal{V}									

To find the center of the table, which is the x-coordinate of the Vertex:

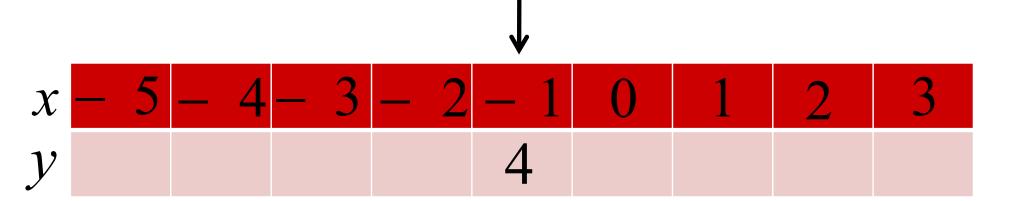
$$x = \frac{-(B)}{2A}$$

also known as the axis of symmetry

Find the <u>y-coordinate</u> by plugging the x into the original equation.

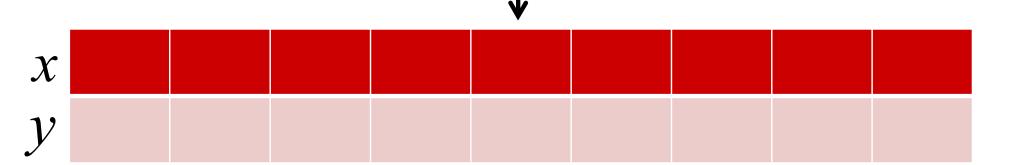
$$y = Ax^2 + Bx + C$$

Find the Vertex of each Quadratic.

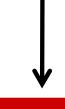

A)
$$y = x^2 + 6x - 3$$

B)
$$y = -2x^2 - 8x + 7$$

C)
$$y = 3x^2 - 12x - 1$$


2)
$$y = -x^2 - 2x + 15$$

Find Vertex


3)
$$y = x^2 + 2x - 8$$

Find Vertex

4)
$$y = -x^2 - 2x + 10$$

Find Vertex

$\boldsymbol{\mathcal{X}}$					
y					